Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Chinese Journal of Biotechnology ; (12): 632-649, 2022.
Article in Chinese | WPRIM | ID: wpr-927733

ABSTRACT

The redox biosynthesis system has important applications in green biomanufacturing of chiral compounds. Formate dehydrogenase (FDH) catalyzes the oxidation of formate into carbon dioxide, which is associated with the reduction of NAD(P)+ into NAD(P)H. Due to this property, FDH is used as a crucial enzyme in the redox biosynthesis system for cofactor regeneration. Nevertheless, the application of natural FDH in industrial production is hampered by low catalytic efficiency, poor stability, and inefficient coenzyme utilization. This review summarized the structural characteristics and catalytic mechanism of FDH, as well as the advances in protein engineering of FDHs toward improved enzyme activity, catalytic efficiency, stability and coenzyme preference. The applications of using FDH as a coenzyme regeneration system for green biomanufacturing of chiral compounds were summarized.


Subject(s)
Catalysis , Coenzymes/metabolism , Formate Dehydrogenases/metabolism , NAD/metabolism , Protein Engineering
2.
Electron. j. biotechnol ; 47: 83-88, sept. 2020. graf, ilus
Article in English | LILACS | ID: biblio-1253097

ABSTRACT

BACKGROUND: L-tert-Leucine has been widely used in pharmaceutical, chemical, and other industries as a vital chiral intermediate. Compared with chemical methods, enzymatic methods to produce L-tert-leucine have unparalleled advantages. Previously, we found a novel leucine dehydrogenase from the halophilic thermophile Laceyella sacchari (LsLeuDH) that showed good thermostability and great potential for the synthesis of L-tertleucine in the preliminary study. Hence, we manage to use the LsLeuDH coupling with a formate dehydrogenase from Candida boidinii (CbFDH) in the biosynthesis of L-tert-leucine through reductive amination in the present study. RESULT: The double-plasmid recombinant strain exhibited higher conversion than the single-plasmid recombinant strain when resting cells cultivated in shake flask for 22 h were used. Under the optimized conditions, the double-plasmid recombinant E. coli BL21 (pETDute-FDH-LDH, pACYCDute-FDH) transformed 1 mol·L-1 trimethylpyruvate (TMP) completely into L-tert-leucine with greater than 99.9% ee within 8 h. CONCLUSIONS: The LsLeuDH showed great ability to biosynthesize L-tert-leucine. In addition, it provided a new option for the biosynthesis of L-tert-leucine.


Subject(s)
Leucine Dehydrogenase/metabolism , Bacillales/enzymology , Leucine/biosynthesis , Temperature , Recombinant Proteins , Escherichia coli , Hydrogen-Ion Concentration
3.
Microbiology ; (12)1992.
Article in Chinese | WPRIM | ID: wpr-685313

ABSTRACT

Formate dehydrogenase(FDH)coding gene was amplified from genomic DNA of Pichia pastoris by polymerase chain reaction, and the codon TAG(bases 649-651)was mutated to GAG using site-directed mutagenesis.The recombinant plasmid pET-FDH was con- structed by inserting the mutated DNA fragment into expression vector pET-22b(+),and transformed into E.coli BL21(DE3).FDH was expressed as a form of soluble prutein fused with 6?His tag at high level through IPTG induction.The amount of FDH was up to about 30% of the total cell protein.The cells-free crude extract was purified by one affinity chromatographic step,and resulting enzyme preparation revealed a specific activity of 6.45 U/mg.

SELECTION OF CITATIONS
SEARCH DETAIL